Մանրամասնորեն

Հեծանվավազքի մրցավազքը

Հեծանվավազքի մրցավազքը

Երկու հեծանվորդներ վիճարկում են ամբողջական շրջապտույտի մրցավազքը դեպի 500 մետր թավշաչափ: Մեկնարկային գիծը երկուսն էլ նույնն են, բայց դրանք ընթանում են հակառակ ուղղությամբ:

Առաջին հեծանվորդը հատում է ավարտի գիծը, երբ երկրորդին պետք է անցնի 5 մետր:

Որտեղ պետք է տեղադրվի երկուսի մեկնարկային գիծը, որպեսզի նրանք միաժամանակ հասնեն նպատակին:

Լուծում

Եթե ​​նրանք հակառակ ուղղությամբ են վազում, մեկնարկային գծից իրենց ավարտին հասնելու հեռավորությունը որոշ չափով ավելի մեծ կլինի այն դեպքում, երբ մեկը ավելի քան մեկ պտույտ է տանում, իսկ մյուսի համար ՝ մի փոքր ավելի: Որպես ակնարկ
Ամբողջական միջոցառումներ 500-ով, և մենք չգիտենք, թե ինչ է անհրաժեշտ առաջին հեծանվորդը ճանապարհորդելու համար, մենք ենթադրում ենք, որ այն տևել է ժամանակ տ, այնպես որ դրա արագությունը, ենթադրելով, որ այն կայուն է պահում, կլինի 500 / տ,
իսկ մյուս հեծանվորդի, որը մնացել է ավարտի գծից 5 մետր հեռավորության վրա, կլինի 495 / տ:

Եթե ​​մենք մեկնարկային գիծը տեղադրում ենք ուղուից այլ դիրքում, ասենք, որ ելքից x մետր հեռավորության վրա, դանդաղ հեծանվորդը պետք է անցնի 500 - x մետր, մինչդեռ ամենաարագը պետք է ճանապարհորդի 500 + x: Քանի որ մենք ուզում ենք, որ նրանք միաժամանակ հասնեն, պետք է կատարվի, որ (500 + x) / (500 / t) = (500 - x) / (495 / t):

Այս հավասարման մեջ պարզ է, որ մենք կարող ենք պարզեցնել t- ը, այնպես որ այն մնում է (500 + x) / 500 = (500 - x) / 495, իսկ անվանումները հանելով ՝ 495 × (500 + x) = 500 (500 - x) , որտեղ մենք հասնում ենք 995x = 2500, այնպես որ x արժե 2500/995, նպատակից մոտավորապես 2,5126 մետր հեռավորության վրա.